102 research outputs found

    Tracking Target Signal Strengths on a Grid using Sparsity

    Get PDF
    Multi-target tracking is mainly challenged by the nonlinearity present in the measurement equation, and the difficulty in fast and accurate data association. To overcome these challenges, the present paper introduces a grid-based model in which the state captures target signal strengths on a known spatial grid (TSSG). This model leads to \emph{linear} state and measurement equations, which bypass data association and can afford state estimation via sparsity-aware Kalman filtering (KF). Leveraging the grid-induced sparsity of the novel model, two types of sparsity-cognizant TSSG-KF trackers are developed: one effects sparsity through â„“1\ell_1-norm regularization, and the other invokes sparsity as an extra measurement. Iterative extended KF and Gauss-Newton algorithms are developed for reduced-complexity tracking, along with accurate error covariance updates for assessing performance of the resultant sparsity-aware state estimators. Based on TSSG state estimates, more informative target position and track estimates can be obtained in a follow-up step, ensuring that track association and position estimation errors do not propagate back into TSSG state estimates. The novel TSSG trackers do not require knowing the number of targets or their signal strengths, and exhibit considerably lower complexity than the benchmark hidden Markov model filter, especially for a large number of targets. Numerical simulations demonstrate that sparsity-cognizant trackers enjoy improved root mean-square error performance at reduced complexity when compared to their sparsity-agnostic counterparts.Comment: Submitted to IEEE Trans. on Signal Processin

    Vesicular Stomatitis Virus Enters Cells through Vesicles Incompletely Coated with Clathrin That Depend upon Actin for Internalization

    Get PDF
    Many viruses that enter cells by clathrin-dependent endocytosis are significantly larger than the dimensions of a typical clathrin-coated vesicle. The mechanisms by which viruses co-opt the clathrin machinery for efficient internalization remain uncertain. Here we examined how clathrin-coated vesicles accommodate vesicular stomatitis virus (VSV) during its entry into cells. Using high-resolution imaging of the internalization of single viral particles into cells expressing fluorescent clathrin and adaptor molecules, we show that VSV enters cells through partially clathrin-coated vesicles. We found that on average, virus-containing vesicles contain more clathrin and clathrin adaptor molecules than conventional vesicles, but this increase is insufficient to permit full coating of the vesicle. We further show that virus-containing vesicles depend upon the actin machinery for their internalization. Specifically, we found that components of the actin machinery are recruited to virus-containing vesicles, and chemical inhibition of actin polymerization trapped viral particles in vesicles at the plasma membrane. By analysis of multiple independent virus internalization events, we show that VSV induces the nucleation of clathrin for its uptake, rather than depending upon random capture by formation of a clathrin-coated pit. This work provides new mechanistic insights into the process of virus internalization as well as uptake of unconventional cargo by the clathrin-dependent endocytic machinery

    The functions and consequences of force at kinetochores

    Get PDF
    Chromosome segregation requires the generation of force at the kinetochore—the multiprotein structure that facilitates attachment of chromosomes to spindle microtubules. This force is required both to move chromosomes and to signal the formation of proper bioriented attachments. To understand the role of force in these processes, it is critical to define how force is generated at kinetochores, the contributions of this force to chromosome movement, and how the kinetochore is structured and organized to withstand and respond to force. Classical studies and recent work provide a framework to dissect the mechanisms, functions, and consequences of force at kinetochores.National Institute of General Medical Sciences (U.S.) (Grant GM088313

    Actin Dynamics Regulate Multiple Endosomal Steps during Kaposi's Sarcoma-Associated Herpesvirus Entry and Trafficking in Endothelial Cells

    Get PDF
    The role of actin dynamics in clathrin-mediated endocytosis in mammalian cells is unclear. In this study, we define the role of actin cytoskeleton in Kaposi's sarcoma-associated herpesvirus (KSHV) entry and trafficking in endothelial cells using an immunofluorescence-based assay to visualize viral capsids and the associated cellular components. In contrast to infectivity or reporter assays, this method does not rely on the expression of any viral and reporter genes, but instead directly tracks the accumulation of individual viral particles at the nuclear membrane as an indicator of successful viral entry and trafficking in cells. Inhibitors of endosomal acidification reduced both the percentage of nuclei with viral particles and the total number of viral particles docking at the perinuclear region, indicating endocytosis, rather than plasma membrane fusion, as the primary route for KSHV entry into endothelial cells. Accordingly, a viral envelope protein was only detected on internalized KSHV particles at the early but not late stage of infection. Inhibitors of clathrin- but not caveolae/lipid raft-mediated endocytosis blocked KSHV entry, indicating that clathrin-mediated endocytosis is the major route of KSHV entry into endothelial cells. KSHV particles were colocalized not only with markers of early and recycling endosomes, and lysosomes, but also with actin filaments at the early time points of infection. Consistent with these observations, transferrin, which enters cells by clathrin-mediated endocytosis, was found to be associated with actin filaments together with early and recycling endosomes, and to a lesser degree, with late endosomes and lysosomes. KSHV infection induced dynamic actin cytoskeleton rearrangements. Disruption of the actin cytoskeleton and inhibition of regulators of actin nucleation such as Rho GTPases and Arp2/3 complex profoundly blocked KSHV entry and trafficking. Together, these results indicate an important role for actin dynamics in the internalization and endosomal sorting/trafficking of KSHV and clathrin-mediated endocytosis in endothelial cells

    Actin Polymerization Controls the Organization of WASH Domains at the Surface of Endosomes

    Get PDF
    Sorting of cargoes in endosomes occurs through their selective enrichment into sorting platforms, where transport intermediates are generated. The WASH complex, which directly binds to lipids, activates the Arp2/3 complex and hence actin polymerization onto such sorting platforms. Here, we analyzed the role of actin polymerization in the physiology of endosomal domains containing WASH using quantitative image analysis. Actin depolymerization is known to enlarge endosomes. Using a novel colocalization method that is insensitive to the heterogeneity of size and shape of endosomes, we further show that preventing the generation of branched actin networks induces endosomal accumulation of the WASH complex. Moreover, we found that actin depolymerization induces a dramatic decrease in the recovery of endosomal WASH after photobleaching. This result suggests a built-in turnover, where the actin network, i.e. the product of the WASH complex, contributes to the dynamic exchange of the WASH complex by promoting its detachment from endosomes. Our experiments also provide evidence for a role of actin polymerization in the lateral compartmentalization of endosomes: several WASH domains exist at the surface of enlarged endosomes, however, the WASH domains coalesce upon actin depolymerization or Arp2/3 depletion. Branched actin networks are thus involved in the regulation of the size of WASH domains. The potential role of this regulation in membrane scission are discussed

    Identification and Characterization of an Unusual Class I Myosin Involved in Vesicle Traffic in Trypanosoma brucei

    Get PDF
    Myosins are a multimember family of motor proteins with diverse functions in eukaryotic cells. African trypanosomes possess only two candidate myosins and thus represent a useful system for functional analysis of these motors. One of these candidates is an unusual class I myosin (TbMyo1) that is expressed at similar levels but organized differently during the life cycle of Trypanosoma brucei. This myosin localizes to the polarized endocytic pathway in bloodstream forms of the parasite. This organization is actin dependent. Knock down of TbMyo1 results in a significant reduction in endocytic activity, a cessation in cell division and eventually cell death. A striking morphological feature in these cells is an enlargement of the flagellar pocket, which is consistent with an imbalance in traffic to and from the surface. In contrast TbMyo1 is distributed throughout procyclic forms of the tsetse vector and a loss of ∼90% of the protein has no obvious effects on growth or morphology. These results reveal a life cycle stage specific requirement for this myosin in essential endocytic traffic and represent the first description of the involvement of a motor protein in vesicle traffic in these parasites

    Fluorescent microtubules break up under illumination.

    No full text

    Kinetics of Coloration in Photochromic Organoammonium Polyoxomolybdates

    No full text
    International audienceThe excellent photochromic properties of (H(2)DABCO)(2)(HDMA)(0.5)Na-0.75(H3O)(0.75)[Mo8O27]center dot 3H(2)O (4), a new member of the (H(2)DABCO)(2)(A)(x)[Mo8O27]center dot nH(2)O series, are compared with those of (H(2)DABCO)(2)(NH4)(2)[Mo8O27]center dot 4H(2)O (1), (H(2)DABCO)(2)(H(2)pipz)[Mo8O27] (2), and (H(2)pipz)(3)[Mo8O27] (3). All these powdered materials turn from white to purple under illumination at 365 nm, which is associated with photoreduction of Mo6+ cations into Mo5+ cations. We show that the rates of coloration, which increase in the order 1 < 3, 2 < 4, are related to the decrease in the concentration of reducible Mo6+ centers with irradiation time and follow a second-order reaction law because the event of light absorption at a reducible Mos+ site does not necessarily coincide with that of the N+-H bond breaking in the N+-H center dot center dot center dot O hydrogen bond associated with the Mo6+ site. First-principles density functional electronic structure calculations were carried out to find that this trend correlates with the homolytic dissociation energies of the N+-H bonds in the organic cations HDMA(+), H(2)pipz(2+), H(2)DABCO(2+), and NH4+. This observation is consistent with a photochromic mechanism based on the homolytic cleavage of N+-H bonds rather than on the heterolytic cleavage of N+-H bonds
    • …
    corecore